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A Fair Minimax Theorem for
Two-Person (Zero-Sum) Games
Involving Finitely Additive Strategies

MARK J. SCHERVISH AND
TEDDY SEIDENFELD

ABSTRACT

In this chapter we discuss the sensitivity of the minimax theorem to the cardi-
nality of the set of pure strategies. In this light, we examine an infinite game due
to Wald and its solutions in the space of finitely additive (f.a.) strategies.

Finitely additive joint distributions depend, in general, upon the order in which
expectations are composed out of the players’ separate strategies. This is con-
nected to the phenomenon of “non-conglomerability” (so-called by deFinetti),
which we illustrate and explain. It is shown that the player with the “inside inte-
gral” in a joint fa. distribution has the advantage.

In reaction to this asymmetry, we propose a family of (weighted) symmetrized
joint distributions and show that this approach permits “fair” solutions to fully
symmetric games, e.g., Wald’s game. We develop a minimax theorem for this
family of symmetrized joint distributions using a condition formulated in terms
of a pseudo-metric on the space of f.a. strategies. Moreover, the resulting game

We thank our colleagues in Mathematics, Russell Walker and Juan Schaffer, for
references concerning Glicksburg’s theorem. Research for this essay was partially
supported through an N.SE. Grant DMS 88-05676 and by O.N.R. Contract N00014-
88-K0013. Some preliminary result from this essay were presented at the 40th NBER-
NSF Seminar on Bayesian Inference and Econometrics in May 1990 at George
Washington University.

From Bayesian Analysis in Statistics and Econometrics, edited by D. Berry, C.
Chaloner, and J. Geweke (New York: John Wiley & Sons, Inc., 1996), pp. 557-568.
Copyright © 1996 John Wiley & Sons, Inc. Reprinted by permission of John Wiley &
Sons, Inc.

This essay contains the proofs of theorems and lemmas omitted, for reasons of
space, in the previously published version.
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can be solved in the metric completion of this space. The metrical approach to a
minimax theorem is contrasted with the more familiar appeal to compactifica-
tions, and we explain why the latter appears not to work for our purposes of
making symmetric games “fair.” We conclude with a brief discussion of three
open questions relating to our proposal for f.a. game theory.

INTRODUCTION

In this essay we derive results for finitely additive (mixed) strategies in
two-person, zero-sum games with bounded payoffs. We establish a
minimax theorem which is novel in that it allows for joint (finitely addi-
tive) distributions which make symmetric (bounded) games fair. That
is, the minimax value of a fully symmetric game is O under our
proposal. : '

In section 1 we review the sensitivity of the familiar minimax
theorem (of von Neumann and Morgenstern, 1947) to the cardinality
of the set of pure strategies. That result, which uses mixed strategies
taken from the class of countably additive probabilities, does not apply
when the set of pure strategies is infinite. A simple game due to Wald
(1950), “Pick the Bigger Integer” (Example 1.1), illustrates the pro-
blem. (In this game, the payoffis 0 if both players pick the same integer,
-otherwise the winner receives 1.) When all strategies are countably
additive, this game has no value. If, however, only one player
is allowed to use a (merely) finitely additive mixed strategy, Wald’s
game has a value and that player wins. Allowing both players to use
finitely additive mixed strategies leads to a value for the game (as
shown by Heath and Sudderth, 1972), but it has the unfortunate
consequence that the value depends upon the order of integration
over the two mixed strategies. We relate this phenomenon, as it appears
in “Pick the Bigger Integer,” to P. Lévy’s 1930 example of what
deFinetti (1972) calls “non-conglomerability” of finitely additive
probability.

We find that for all games the player with the “inside” integral occu-
pies the favored position (Theorem 2.2). This means that even for
games with symmetric payoffs, as in Wald’s game, there may be no sym-
metry reflected in the value of the game if it is solved by using a par-
ticular order of integration. Also in section 11 we investigate joint
finitely additive distributions created from the players’ two mixed
strategies by taking convex combinations of the two “extreme” joint
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distributions, where the “extreme” versions of a game correspond to
fixing the order of integration first one way and then the other. This
leads to a parametrized class of joint distributions, r,, indexed by a
weight w, 0 < w < 1. (That is, the “extreme” versions of the game cor-
respond to the values w =0 and w = 1.) We prove the minimax theorem
(Theorem 2.3) for the set of joint distributions ,, under an assumption
(Condition A) expressed in terms of metrical properties of the space
of mixed strategies. A simple corollary is that for fully symmetric games
(where payoffs satisfy f(s, £) = —f(z, s) and with w = 0.5) the game is fair,
i.e., the value for the game is 0. Also under condition A, Theorem 2.4
establishes the existence of minimax strategies in the (metric) com-
pletion of the space of mixed strategies.

- We illustrate the phenomenon that the solution to a game may fail
to be a mixture of the minimax solutions from the two “extreme” ver-
sions of that game (Example 3). There is an important non-convexity
of minimax solutions associated with joint distributions formed by
convex combinations of the two “extreme” versions of a game.

In section m we provide a brief account of some related literature.
(We defer our review of others’ work until section 11 to allow a con-
trast with the position taken in this report.) In section 1v we indicate a
connection between our treatment of games and “improper” priors,
and our concluding section v addresses several open questions which
we find of interest.

I. THE EFFECT OF INFINITELY MANY PURE STRATEGIES ON
THE MINIMAX THEOREM

L1. Two-Person, Zero-Sum Games with Infinitely Many
Pure Strategies

In a two-person, zero-sum game, player-1 has pure strategies s € S and

player-2 has pure strategies t € 7. Let f(s, ¢) be the real-valued payoff

to player-1, so that —f(s, ) is the payoff to player-2, when player-1 uses
strategy s and player-2 uses strategy ¢. Allow the players to have mixed
strategies, i.., player-1 may use a distribution p (e P,) on S and player-
2 may use a distribution g (¢ Q) on T; for P, and Q, sets of (o
additive) probabilities. Then, the (expected) value of strategy pair
(p, q) is (assuming f is bounded and measurable with respect to the
product measure, p X q):
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Epof(s, )= E,[E,f(s,0)] = E,[E,f(s,1)].

That is, the joint distribution is the product measure which, by Fubini’s
theorem, may be written as the double integral in either order.

Let § and T be finite sets; then (von Neumann and Morgenstern,
1947) the fundamental result of two-person, zero-sum games asserts:

Theorem 1.1 (“Minimax”).
SUDps infgs By, f(5,1) = infp, SUPps By f(5,0) =V (1)
That is, the game has a value V. Also:
Ap*VqE, ., f(s,t) 2 V [maximin strategy] (i)
and
3Ag*VpE,.xf(s,1) <V [minimax strategy]
Thus, the strategy pair (p*, g*) solves the game. [

This minimax result, even the fact that the game has a value, depends
upon there being only finitely many pure strategies. Wald (1950)
provides an elegant counterexample when the sets S and T are
denumerable.

Example 1.1 (“Pick the Bigger Integer”). Let the pure strategies, S =
T=1{1,2,....}, be the positive integers. Define the payoff function to
player-1 (which is the negative of the payoff to player-2) by:

f(s,r)=1, ifs>t

=0, ifs=t
=-1, ifs<r
Then,
supp infy E,,, f(s,1) = -1
while

ian Supp prqf(s, I) =+1.

Proof. For each o-additive measure u on the positive integers, given €
(0 < < 1), there is another o-additive measure v and integer n, where
vimmn>ng>1-¢ewhile ylnn<n}>1-¢ O
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Thus, game-1 is without a value in the class of countably additive
strategies.

Suppose we allow one player the use of a finitely additive (f.a.) mixed
strategy in Wald’s game. Then we can show that the game is determined
and that player wins.

Definition. Call p a purely finitely additive (p.f.a.) probability if given
£> 0, there is a denumerable partition 7= {h:i=1, ...} with T, P(h)
< & Also, we refer to these as diffuse probabilities.

If player-1 adopts a diffuse probability p,(n) =0 (n = 1,...), but
player-2 is restricted to the set Q, then infg,E, «,f(s, 1) = +1. Likewise,
when player-2 adopts a diffuse probability g.(n) =0 (n=1,...), but
player-1 is restricted to the set P, then suppeEpx, f(s, 1) = -1.

This notation is warranted because, on countable spaces, if one of the
players uses a countably additive mixed strategy, the order of integra-
tion is irrelevant. That is,

Lemma 1.1.

V(e Qo )E,,[E f(s,1)]=E4[E,, f(s,1)] = +1
Also,

V(p ek, )Eqd [Epf(sv [)] = Ep[Eqdf(Sa t)] =-1.

(The proof is straightforward and is omitted.)

On the other hand, suppose we allow both players in Wald’s game

~ to use finitely additive mixed strategies (p, ¢). The solution now

depends upon how the joint strategy, “p x ¢”, is defined. In-
general, with finitely additive distributions p and g, E[E,f(s, 1)] #

E [Ef(s, 1)].

Example 1.2 (attributed to P. Lévy by deFinetti, 1972). Consider a
diffuse probability r on the set of all pairs (s, £), for s and ¢ positive
integers, with the following two restrictions:

r({s,1)) =0,

that is, 7 is 0 on finite sets; and
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-o-0--0--9

3 [ -%--F--o--0--0---0

3

Event E corresponds to pairs <s,t>
below the main diagonal

Event E O

Event E © @

Figure 1. Diagram for P Lévy’s example. Only finitely many points on each ver-

tical section lie below the diagonal. Only finitely many points on each horizon-
tal section lie above the diagonal.

r({s,)[F)=0 if Fis an infinite set,

that is, conditionally, 7 is again diffuse given an infinite set F.
Define the events:

E={(s,1):5>1],
Sn={s,1):5=m} (m= 1,..),
and
Li={{s,t):t=n} (n=1, o)

Then, r(EIS,,) = 0 for m = 1,...,yet HEIT,)=1forn= 1,....Thatis,
conditioned on each vertical section, the r-probability of an outcome
below the main diagonal is 0. However, conditioned on each horizon-
tal section, the r-probability of the same event is 1. '

Figure 1 illustrates what is happening.
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L2. Non-conglomerability of Finitely Additive Probabilities

Definition (Dubins, 1975). Say that probability p is conglomerable in
the (denumerable) partition 7= {h:i =1, ...} provided that, for each
bounded random quantitiy X and V(ky, k), if

k<EX|h)<k, (i=1..)
then |
k< E(X)<k,,

where E(*) means expectation with respect to p.

Equivalently (Dubins, 1975), p is conglomerable in partition 7 just
in case p is disintegrable in =, and for the special case of an event E
(identified with its indicator function)

p(E)=] __p(E|h)dp(h), forall E.

In Lévy’s example, with the two partitions m, = {s;i=1,...} and x, =
{t:7=1,...}, we see that

Lem p(E|s)dp(s)=0 and -[teﬂz P(E|0)dp(r) = 1.

So p fails to be conglomerable in at least one of the two (denumer-
able) partitions 7; and 7,.

The lack of conglomerability is endemic to merely finitely additive
probabilities. That is, each f.a. probability that is nor countably additive
experiences non-conglomerability in some denumerable partition
(Schervish et al., 1984). More precisely, we can say this. Each f.a. prob-

~ability p has a (unique) decomposition into a convex combination of a

o-additive probability p, and a purely finitely additive probability p,:
Vp3l(0<a<l) p=ap,+(1-a)p,

and p, [or p,] is unique if a [or if 1 — a] is positive (Yoshida and Hewitt,
1952). The quantity a is the least upper bound on the extent of non-
conglomerability of p with respect to events. That is, given a fa.
probability p, for each £ > 0 there is a denumerable partition 7 =
{hzi=1,...} and event E where,

P(E)- p(E|h)>a—¢, foralli.
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II. FINITELY ADDITIVE JOINT STRATEGIES

IL1. A Proposal for the (Finitely Additive) Joint Distribution
f{p Xq” »

Reconsider Wald’s game (“Pick the Bigger Integer”). Observe that in
Lévy’s example, the event E corresponds to the outcomes where
player-1 wins. The non-conglomerability of the probability 7 (in Lévy’s
example) illustrates the effect of changing the order of integration in
creating a joint distribution on S x 7 from the two diffuse “marginal”
distributions, p and g. These marginal probabilities correspond to the
players’ strategies on S and on T (respectively). Let P and Q denote
the sets of finitely additive mixed strategies on sets S and T, Thus, when
players use (diffuse) purely finitely additive probabilities (p,, q,) which
assign probability zero to each pure strategy, then

V(peP)E,[E, f(s,0)]=-1 and V{qeQ)E,[E,, f(s,1)]=+1.

In particular,

E L [E, f(s,0)]==1#+1= E lE,, f(s,1)].

How shall we define the joint distribution that results when player-
1 adopts the fa. strategy p and player-2 adopts strategy g? The condi-
tion which motivates our solution, below, is to allow that symmetric
bounded games, such as Wald’s, admit a solution which makes them
fair. That is, when f(s, £) = -1, s) for each pure strategy pair (s,1) (and
when payoffs are bounded), so the game is symmetric, we require there
to be a finitely additive solution to the game that makes it a “draw.”
We require of such games that they have a value 0.

Proposal. Given f.a. probabilities p and g on § and T (respectively),
and given 0 < w < 1, adopt the joint probability 7, on the power set
P[S x T1, as follows. For event E e PIS x T,

rw[E]=wafs ‘g dpdq+(1—w)ijT *r dq dp,

where % is the indicator function for event E. The joint distribution r,,
can be thought of as a w-weighted coin-flip between the two joint dis-
tributions obtained by fixing the order of integration.

Generally, given p, g and a (bounded) function f(s, ) on S x 7, define
the E, -expectation of f as:
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E,,(p,q) = WE,[E, (s, )]+ (1-W)E, [E,f(s,1)].

The parameter w weights the contribution to the joint expectation E,,
on § x T of the two “extreme” distributions E, = E [E, f] and E,, =
E,[E, f]. As we explain next (Theorem 2.2), these two are “extreme
in the sense that, in zero-sum games, w = 1 favors the first (p-)player,
whereas w = 0 favors the second (g-)player. Each player prefers the

E,,-game where his expectation has the “inside” integral.

Heath and Sudderth (1972) show that (for games with bounded
payoffs) when the joint distribution is determined by fixing the order
of integration, then the game has a value. That is, their result is:

Theorem 2.1.
Vi = supp infy E,[E, f(s,1)] = infy supp E,[E, f(s,1)]

and
V, = supp ian o[ Eqf(s, )] =infy supp E,[E, f(s, 1)].

In our notation, V, is the value of the E,l-game, and V, is the value
of the E, -game. It is a simple corollary to the Heath-Sudderth result
that there are minimax strategies which achieve these values.

Corollary 2.1. Corresponding to the E, -game there are strategies,‘
(p1, q1) such that

1/1 - ian Erl(ply q) = SupP Erl(pa ql )s

and corresponding to the E, -game there are strategies (p,, g,) such
that

Vo=infy E, (p2,q@)=supp E, (p,q,). [
This corollary also appears as Theorem 2.1 in Kindler (1983).

Theorem 2.2 (Vw).
Va2 <suppinfy E,, (p, q) <infysuprE,, (p, ) <V,

Proof. The players’ minimax strategies (each taken from his dis-
favored game) provide the desired bounds. Corollary 2.1 eusures these
strategies exist. Specifically,
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SupP ian Erw (p7 Q) 2 ianErw (p2) Q) 2 W(lan Eq [Epz f(Sa [)])
+(1—W)lan Ep2 [qu(s, t)]ZVz. '

Only the third of these inequalities requires an explanation. It follows
from the two facts: (i) info Eqs[E, f(s, 1)] = V., since g, solves the E,,
game; and (ii) infoE[FE, f(s, 1)] = V,, since, if on the contrary
(infoE[E,, f(s, 1)] < V2), then 3(r* e T) such that E, f(s, t*) < V). But
that contradicts p, as a minimax solution to the E, -game. A similar
argument, with “p”, “q”, and inequalities all interchanged, proves the
result about V,. [

Hence, for all bounded games, V, < V;, and a player’s advantage is with
the “inside” integral.

To express our minimax theorems concerning the E, -game, we

pseudo-metrize the set of strategies.

Definition. Say that two strategies for a player are equivalent in the
E,,-game provided they have the same (expected) value against each
possible strategy of the opponent. (Denote this relation by =, where
the game is identified by context.)

That is,

(p1=p,)in game E, if and only if (Vq)E,, (p1, q) = E,, (p2, q);
likewise ‘
(1 =q,)in game E,, if and only if (Vp)E,, (p,q:)=E,,(p, q,).

It is obvious that = is an equivalence relation.

Consider the pseudo-metrics pp on P-strategies and p, on Q-
strategies defined by

pr(p1, p2)=supolE,, (p1,9)~ E,, (P2, q)
and

Po (41, g2)=supplE,, (p,q:)~E,, (p,q:)}

Lemma 2.1. pp(py) is a pseudo-metric on the set P (set Q). O
Wald (1950, chapter 2) introduced the same pseudo-metrics to deal

with countably additive mixed strategies. The proof that they are
pseudo-metrics is the same as in the countably additive case.
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Clearly, pp(p1, p2) = 0 just in case (p; = P2), and similarly with pg;
thus, these two pseudo-metrics are metrics on their respective
=-equivalence classes of strategies. The: pseudo-metrics express by
how much two strategies may be separated through the choice of the
opponent’s reply.

Next, we formulate a sufficient condition for existence of a value for
the F, -game. The condition concerns approximately maximin strate-
gies for one player and corresponding approximately best responses by
the other player. Some notation is needed, first, to make these concepts
precise.

Suppose supy infoE,,(p, q) = a. Then, given € >0, Vp € P,3q ¢ o
with E, (p, q) < a + &. Given p, define the quantity:

v(p)=infy E, (p, q)

and the set

R*(p)={q: E,,(p,q) <v(p)+€}.

v(p) is the (limit of the) value of best replies g-player can make against
strategy p. R%(p) is the ser of e-best replies g-player has against the
strategy p.

Let

B,,(q* €)={q: po(g, q*) <€}, the set of g’s near to g*.

Also, because supp infyE,, (p, ) = a, given £>0,3p € P, Vg e O such

E. (p,qg)2a-¢
Define the set

Pt ={p:VqE, (p,q)=a—¢}.

P*is the set of e-maximin strategies for p-player. Clearly, the sets R%( D)
and P are nonempty and convex. Next, we state the condition under
which we prove our minimax theorems. Observe that it is formulated
asymmetrically between the two players. We discuss this and other fea-
tures of the condition below.

Condition A.

Ak >0),V(6>0),H0<e<8)TIpe PAn>0:q €0, 1<i<n)
with R**(p) c U, B, (¢, ke).
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Condition 4 requires that, for each small £ > 0, there is some &-
maximin strategy p, each of whose 2¢-best replies is ke-near to (in the
sense of py) one of some finitely many qg-strategies. In simpler words,
there is a “safe” p-strategy [p € P9 whose set of “best” responses
[R**(p)] is covered by a finite number [7] of “small” balls [B,,(g: ke)].
Within e-approximations, Condition .4 is that there exists some
maximin p-strategy, where each good g-reply to p is close to one of
some finite collection of q’s. :

Condition A is truly asymmetric; it may be satisfied under one order
of the players’ strategies, but not with roles reversed. For example, con-
sider an extreme version of Wald’s game, Example 1.1, with w = 1.
Recall, E,(p, q) = E.E[f(s, 1)]. The p-player has the advantage
(Theorem 2.2) and the game’s value is 1. According to the (corollary
to the) Heath-Sudderth theorem (Theorem 2.1), minimax Strategies
exist. For p-player, the minimax strategies all belong to the same Pp-
equivalence class — any diffuse strategy, p,, is minimax and only diffuse
strategies are minimax for the first player. However, p, is an “equal-
izer” strategy: V,, E,l(pd, q) = 1. Hence, all of Q is the set of “best”
responses to p,,.

Since py(q, ") > 1 whenever q and g’ are different (point-mass) pure
strategies, there is no p e P° satisfying Condition 4. The “best”
responses to p, are not contained within finitely many small Po-
neighborhoods. Nonetheless, by considering Condition 4 with the
players’ roles reversed, we discover that, against a diffuse strategy q,,
all good p-responses in the E, -game are near to the equivalence class
- of diffuse strategies, represented by the strategy p,. That is, with the
alternative reading, Condition 4 is satisfied using a single pp-neigh-
borhood of p-strategies near to palk =2).

It is easy to verify that Condition 4 obtains in the non-extreme ver-
sions of Wald’s game: all diffuse strategies (p, or g,) lie in the same
equivalence class for that strategy space and, in fact, each such strat-
egy is minimax. For 0 < w < 1 and for sufficiently small ¢, all good

résponses to p, are close (in the sense of Po) to g,. Thus, there is a single
| neighborhood (n=1, k = 2) which satisfies Condition 4 and it applies
to either player. For non-extreme versions of Wald’s game, 4 obtains
both ways.

Theorem 2.3. Provided Condition A holds,
suppinfy E, (p, q)=infysup, E, (p, q).
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Proof. Clearly, suppinfyF,, (p, q) < infysuppE, (p, q), regardless of
Condition A. We argue for the reverse inequality using two lemmas
(which do not require Condition A).

Lemma 2.2. Let suppinfyE, (p, q) = a. Then there is a finitely additive
measure, 4, on the space of (-strategies with the property that Vp
P? J'QEfw(pa Q) dlu S a. D

Proof (of lemma). - This proof is very similar to that of Heath and Sud-
derth’s (1972, p. 2072) “Theorem 1.” Consider the set B of all bounded
functions from Q to the reals, R. For each pe P E, (p,*) e B Let
Ki={fe B:Vq,f(q)>a}.Let K, = {E, (p,*):p € P}. The assumption,
suppinfoE, (p, q) = a,implies Ky N K, = ¢. Clearly, K; and K are convex.
By Theorem 8 (p. 417 of Dunford and Schwartz, 1958), there exist a

scalar ¢ and a non-zero linear function 7 on B with the following two
properties:

Vpe P,VheK,, nlE, (p,*)]<c<n(h);
If lim,_.h, = huniformly on Q, thenlim,_.7(k,) = 7(h).

Since 7 is non-zero and linear and since each constant function greater
than a belongs to Kj, it follows that (1) > 0. Normalize 7 so that (1)
= 1. Then it is clear that c < a since m(a) = a and the constant functions
a=¢e K, (whenever > 0). It follows that z[E, (p, *)] < a.

The proof is concluded by showing there exists a finitely additive
probability 12 on Q such that, Vi € B, n(h) = o h(q)du(q). Consider
C e 29 aset of ¢’s. Given £ > 0, let h(q) = a + £ + xc(q). So h. € K,
and 7 yc) 2 0 for each C. Define y(C) = n(c). Since 7 is linear, U is
finitely additive; and as #(1) = 1, is a probability. If 1 is a simple func-
tion, by linearity of x, then n(h) = [,h(q)du(q). Because every bounded
function can be uniformly approximated by simple functions, we obtain
the desired representation: Va e B, m(h) = [oh(q)du(g). [

Based on Lemma 2.2, define the function ¥(p) = [,E, (p, q)du and

denote by I(p) the set I(p) = {g: |1 E,..(p, q) — ¥(p)! < €}.
That is, I(p) is the set of g-strategies whose value against p is close
to the integral ¥(p).

Lemma 2.3, The family {I(p): p € P, £> 0} has the finite intersection
property. [
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Proof (of lemma). We give the proof in two cases, depending on the
size, n, of the finite family {I%(p): p, ¢ P, §>0,7=1,..., n}. First we
argue for the elementary case, n = 1, which we generalize to the other
case,n > 1.

Define L = inf s f(s, 1), U = SUpesxr) f(s, 1), and d = U - L. Let N >
2d/e.Fori=1,...,N~1,define 8p)={q@L+di-1)N< E..(p,q9) <
L + di/N}, and for i = N, let the last inequality be <. Let Cip = H(8AD)),

~ Wwhere u is the fa. measure taken from Lemma 2.2. For each i where
84p) # D, let q; e g(p) (for other i, let g; be arbitrary). Define q,, =
=21 C;pq:- It is evident that E.(p,q,) =X, 21 ik, (D, q;). We con-
clude the case (n = 1) by showing that ¢., € I¥(p).

Define the simple function hpeQ — R as: b, (q) = E..(p, q), for q
€ &(p). It is easy to see that Vg, h,(q) - E, (p, q)! < e Hence,
lthp,g(q)du ~ Xp)! < & Since h,(q) is a simple function, constant on
all g € g{p), we have that thp,e(q)d/.L =321 £, 4;), which proves
the point. '

For n > 1, we simplify by noting that I*(p) o I(p) whenever ¢ > ¢,
That is, without loss of generality we take €= min {g} and prove finite
intersection property for {I(py)}. Consider the common refinement of
the partitions generated by the Nn sets, g{p;)- For each (i, ... i) e
{1,..., N} let

As before, let 4iy,....i, € 8i,...,;, When the latter is non-empty; otherwise,
let g;,... ; be arbitrary. Let Ci,....i, = (8,....;,) and let ¥’; denote the 7 —
1 fold summation over all the indices other than the jth index. Set ¢ =
X'ic;.....i.. Last, define qf; = (l/cf;)Z,’-c,-1 ,,,,, o i, Since g . € &)
for each j and i, it follows from the convexity of g;(p;) that g} € gi(p;).
Therefore, select

N o N
" =2.cla} =3
ij= i

=l in=l

We then have that g* € I5(p)), forj=1,....n. ]
Thus, Lemma 2.3 asserts that the intersection of finitely many I(p)
sets is not empty,

S 1%p;) (j=1,..., m).
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Lemma 2.4. Given a p-strategy which is e-maximin, p € P then
R*¥(p) > F(p). O

Proof (of lemma). To see that R*(p) o I*(p) when p € PE note that
Vqe I{p),a—e<E,(p,q) <a+ e The first inequality arises from
the fact that, since p € P, Vg € Q, E,,(p,q) = a~ £ The second inequal-
ity obtains because, Vp, 9(p) < a; hence, Vg € I(p), E. . (p,g)<a+e
Last, observe that for p € P*, R*(p) 2{q:a—e<E, (p,q)Sa+¢). O

To complete the theorem we argue indirectly that supp infoF, (p, q)
2 infosuppE, (p, ). Assume (on the contrary) that infosuppE,, (p, q) =
b > a. Choose 0 < € < (b - a)/(k + 2). By Condition .4, there is a
p-strategy in P*, denoted by p*, with the property that R*(p*)
V; Bpg(g:, ke), for some finite number of ¢’s, (i=1, .. ., n). The assump-
tion that infosuppE,,(p, q) = b, entails that for each g-strategy there is
a p-strategy where E, (p, q) 2 b — . Hence, for each ¢; (i =1, . . ., n)
there is a p; where E, (p; q;)) 2 b — ¢ But then if g € Bpo(g:, ke), g &
I*(p;). In other words, Bpy(q;, k&) M I(p;) = &. (This follows because
Vq € I(p), E..(p» q) < a + € however, Vg € Bpo(q., ke), E, (p;, q) >
b — (k +1)e) Thus, R*(p*) N [M:I5(p;)] = D. According to Lemma 2.4,
then If(p*) N [N:I%(p;)] = &, which contradicts Lemma 2.3.

In light of Theorem 2.3, denote by V,, the value of the game. [tis a
simple corollary that, provided Condition A obtains, symmetric games
are fair, i.e., for symmetric games Vs = 0.

Corollary 2.2. Under the condition for Theorem 2.3, if $ = T and
fls, 1) = —f(t, 5), so the game is symmetric, then Vys = 0, i.e., then the
E, -game is fair,

Proof. By the symmetry of the game, and since the two players have
identical strategy spaces (P = (), observe that for each pair (p, q)
E, (p.q)= —E, (g,p). We argue indirectly. Suppose suppinfyE, (p, q)
=infgsuppE,,(p, ) = b > 0. Then there exists a p strategy such that for
all g strategies, E, (P’,q) 2 b/2>0.But p’is available to the ¢-player, _
denoted now as strategy ¢’, and from the foregoing observation, for all

pE, (p,q’) <-b/2 <0.This contradicts T2.3. [J

Under the same Condition A, next, we show that there exist solu-
tions to the E, -game within the metric completions of pr and p,.
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(Condition A is assumed for the complete spaces.) Not only does the
game have a value, but minimax strategies exist. The central idea in this
theorem is an application of a result about the nonempty intersection
of closed sets in a complete metric space, due to Kuratowski (1968),
using the closure of the sets I%(p). The next lemma, attributed to Kura-
towski, is the metrical analog to compactness for the familiar and
elementary result that, in a compact space, if a family of closed sets
has the finite intersection property, then the family has a nonempty
intersection.

Following Kuratowski, denote by a(x) the greatest lower bound of
numbers ¢ such that set x can be decomposed into a finite union of sets
of diameter < &.

Lemma 2.5 (Kuratowski, 1968, vol. 1, p. 412, the Corollary). In a com-
plete metric space, let {F} be a family (of arbitrary cardinality) of
closed sets with the finite intersection property. If there are sets F,
with arbitrarily small «(F,), then the entire family has nonempty
intersection. [

Consider the topology on (the equivalence classes of) P (or on Q)
induced by pjp (or py), respectively. The product topology on P x () can
be metrized by (among others):

pexol(pr, @), (P2, 42)]= max{ps(p1, p2), Po(a1, 42)}.

Take the metric completions ppx, po*, and ppe+ Obtained by em-
bedding the sets P, Q, and P x Q in the space of bounded, continuous
(real-valued) functions (on P, Q, and P x () using the supremum
metric. (See Dugundji, 1968, p. 304). These completions are related by
the next lemma.

Lemma 2.6. The space (P x Q)* is (identically) isometric with the
product space P* x Q*, where pp.o* is the common metric. []

Proof. By corollary 5.3, p. 303, of Dugundji (1968).
Thus, we may identify limits from the space (P x Q)* by taking
limits from each player’s space of strategies. We use this metric com-

pletion to produce (extended) strategies p* and g* that solve the
E, -game.
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Theorem 2.4,

i. Provided that Condition A obtains, (Ig* e Q%) (Vp € P¥)
E. (p,g%)<V,.
il. Likewise, provided Condition A obtains with the players’ roles
reversed, (3p* € P*)(Vg e Q%)E, (p*, q) 2 V..
iii. So, if Condition A obtains for both players, E, (p*, ¢*) = V,,, and
the strategy pair (p*, g*) solves the E,, -game.

Proof. Regarding (i), we apply Kuratowksi’s Lemma 2.5 to the closed
sets {I%(p): p € P* >0}, where closure is with respect to the complete
space P*. However, in order to do this, first we state a property con-
cerning the extension of expectations from (P x Q) to (P x Q)*. The
following two lemmas are easy to prove, the second being an immedi-
ate consequence of the first. (Also, they appear in Kretkowski and
Telgdrski, 1983.) |

Lemma 2.7. E,, has a unique, uniformly continuous extension form
PxQ)to (PxQ)* [

Lemma 2.8.

suppinfy E, (p, q) =sup Pk ian* E, (p.q)

and

infyosupp E, (p,q) = inf xsup,+ E,, (p,q). O

Next, we duplicate Lemmas 2.2 and 2.3 for the space of metric com-
pletions P* and Q*. The proofs of Lemmas 2.9 and 2.10 follow exactly
those of 2.2 and 2.3, respectively, and are omitted.

Lemma 2.9. Let suppxinfy+E, (p, q) = a. Then there is a finitely addi-
tive measure, 41, on the space of Q*-strategies with the property that,
Vp e P* [y E, (p, g)du<a O

Based on Lemma 2.9, define the function ¥*(p) = [o+ E, (p, q) du

and denote by I(p) the closed set I¥(p) = {g € Q*: |E,(p, q) — ¥(p)!
< &g

Lemma 2.10. The family {I(p): p € P*, £ > 0} has the finite intersec-

tion property. []
Then part (i) of the theorem follows from Lemma 2.5, since Condi-
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tion A assures the existence of closed sets IF(p) with arbitrarily small
“o” (in Kuratowski’s notation).

Part (ii) of the theorem is demonstrated by reversing the players’
roles and part (iii) is an immediate consequence of (i) and (ii). [

I12. Non-convexity of the B, -Games, as a Function of w

Our purpose in this subsection is to indicate, by example,‘ that the

minimax solution to an E,, -game may fail to be a convex combination
of the extreme solutions (where w = () and w = 1).

Example 2.1. Consider a modification of Wald’s game where (as in
“Pick the Bigger Integer”) f(s,7) = -1 if t > 5, f(s,) =0if s = ¢, and
fs,) =1if 2 < rand s > ¢, but (unlike Wald’s game) f{(s, t) = -0.5 for
1 =1<s.The row corresponding to the pure strategy (r = 1) is altered.
- It is straightforward to show that the game has values: V, = -1,
Vi=-02, and V5 = -1/3, for the parameter settings w = 0, w = 1, and
w = 0.5, respectively. Let p, and g, denote any diffuse (p.f.a.) mixed

strategies on the integers. Then the minimax strategies for the games
are:

ps is arbitrary (as g is an “equalizer”strategy), q¢ =q,
for w=0;

- pr=04p, +06(s= 1), ¢=08q,+02(= 1)
forw=1; |

Pos =(2/3)pa +(1/3) (s =1), Gos = (1/3)%,"‘ (2/3)‘(1 =1)
for w=0.5.

Note that Vs # 0.5V,+ 0.5V,. That is, the value of the game for w =
0.5 is not the equal mixture of the values for the two extreme games.
Though Vs = (1/6)V, + (5/6)V, and g5 = (1/6)g§ + (5/6)q¥, pis is not
a similar mixture of p§ and p#, for any p§. The strategies for the mixed
game are not a mixture of the strategies for the extreme games. In
short, our proposal to use joint distributions which are the convex com-
bination of two extreme distributions (w=0and w =1), the E, -game,
results in a non-convexity of minimax values and minimax strategies
with respect to the parameter w.

Condition A applies (and in either order, provided w > 0) to the
strategy spaces for this game. For example, with w = 0.5, pés equalizes

on the two
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on the two strategies used to define gfs: the diffuse g, and the pure
(r=1). Thus, each mixed strategy xq, + (1 - x) (t=1) (for 0< x < 1) is
a “good” response to p¥s. Any other “good” response to pis is po-close
to one of these mixtures. Moreover, these mixtures are contained
within 7 closed pp-balls (of radius 1/n), where each closed ball is cen-
tered at the strategy g; = [i/n]q. + [(n - i)/n] (1 =1) (for 1 <i < n).To
see that A is satisfied, choose k = 3 and, given £> 0, let n > 1/¢. Thus

if g € R*(p¥s) then g € U:Bpy(g; 3¢€). '

III. SOME COMPARISONS WITH OTHER WORK ON FINITELY
ADDITIVE MIXED STRATEGIES

Investigation of finitely additive strategies in zero-sum, two-person
games dates (at least) from Samuel Karlin’s (1950) essay. Karlin, in
turn, responds to Ville’s (1938) game without a value, which uses a
bounded, discontinuous payoff function on the unit square. By a sep-
arating hyperplane argument, Karlin shows that Ville’s game does
have a value when the players use finitely additive strategies and
these are composed into a joint distribution with the order of expecta-
tions fixed. That is, Karlin’s expectation for a (bounded) payoff func-
tion f on [0, 1], using the finitely additive strategy pair (p, q), is based
on the analysis of e.g., E,[E, f(x, y)]. Also, Karlin’s proof relies on an
assumption that the space of pure strategies available to a player is
compact.

Heath and Sudderth (1972) extend Karlin’s result to all two-person
games with bounded payoff functions f{s, r), again using a separating
hyperplane argument. It is reported here as Theorem 2.1. [Their proof
avoids Karlin’s assumption that the space of pure strategies is
compact.] But, like Karlin’s work, their joint distributions are based on
a fixed order of expectations. In terms of our proposal to use the
family:

E, =wE/[E,f(s,0)]+(1-w)E,[E,f(s,1)],

Heath and Sudderth’s theorem establishes the (von Neumann)
minimax result only for the two extreme cases: w =0 and w = 1.

E. B. Yanovskaya (1970) expresses dissatisfaction with the required
asymmetry of these solutions. (J. Kindler, 1983, adopts Yanovskaya’s
approach for this reason.) Yanovskaya introduces a method for assign-
ing values to a strategy pair (p, ), and here that value is denoted E¥(p,
q), which we paraphrase as follows: When E,[E, f(s, )] = E,[E, f(s, 1)],
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then E¥(p, g) is defined by integration in either order. However, when
E[E, f(s,0)] # E,[E, f(s, 1)], then E¥(p, q) is stipulated to be some (real)
quantity a. With this method, Yanovskaya shows that the minimax
theorem (as in Theorem 2.3) obtains for a nonempty set of g values:
either the set is a closed interval [a, @], or it is a single value [a].
The special value a* = [a, + a,}/2 then is uniquely determined by an
additional appeal to three invariance/symmetry conditions. In short,
with Yanovskaya’s proposal, all symmetric (bounded) zero-sum (two-
person) games are fair, i.e., a* = 0.

We are completely sympathetic with the objection that fixing
the order of integration introduces undesirable asymmetries, as in
Heath and Sudderth’s solutions to Wald’s game. However, we find
Yanovskaya’s proposal unsatisfactory, for the following reason.
The E¥*(p, g)-numbers do not satisfy (finitely additive) expected
utility theory. (The cogency of the three invariance conditions for
choosing the midpoint of the [a;, a,]-interval is a different matter
altogether.)

For instance, in connection with Wald’s game (for which g, = -1,
a, = 1 and thus a* = 0), consider the three strategy pairs (pi, q.),
(Pa> 44), and (p,, q4), with (0 < x < 1), where: p, and g, are diffuse, p; is
the pure strategy {s = 1}, and p, = xp, + (1 - x)p,. Then E¥(p,, qa) = -1,
but E(py, 44) = E¥(ps, q4) = a* = 0. However, D is the simple mixture
of two strategies p; and p,; hence, according to (even finitely additive)
expected utility theory, the values ought to satisfy: E(p., q.) =
xE(p1,q4) + (1 - x)E(p4, q4). We understand this expectation feature of
expected utility theory to provide the justification (in fact, von
Neumann’s justification) for assigning values to (countably additive)
mixed strategies based on the values of pure strategies. It seems clear
to us that in extending the value structure to include finitely additive
mixed strategies, the simple expectation property (described above) is
to be respected. Therefore we do not accept Yanovskaya’s method for
solving finitely additive games.

When discussing how to prove minimax theorems like Theorem 2.3
for infinite games (under the assumption that all strategies are count-
ably additive), Karlin offers this advice.

In the theory of infinite games, the truth of [the minimax theorem] is a deep
question, requiring some kind of assumption of continuity [for joint expecta-
tions] and the restriction that at least one of the spaces [P and Q] is compact
space in some suitable sense. (Karlin, 1959, p. 23)
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We were unsuccessful in finding a way to duplicate the proofs given in
section 2.1 (based on metric completions) using compactification of the
spaces P, Q, and P x Q. For one example, using Stone-compactification
in Wald’s game leads to a failure of the counterpart to Lemma 2.6 (see
Glicksberg’s theorem, 1959). For a second example, using the topology
of “pointwise” convergence with Wald’s game invalidates the counter-
part to Lemma 2.7. Instead of compactification, we settled on Condi-
tion A as a useful alternative.

Last, it is straightforward to show that, provided Condition .4
obtains (or if A obtains with P and Q spaces reversed), the set of
minimax strategies for g-player (or for p-player) is precompact -
with respect to py (or pp). This is in contrast with Fan’s (1953)
T.3(ii), minimax theorem. Fan’s result requires (for our case) the
assumption that F,  be an almost periodic function on the product set
P x Q. “Almost periodicity” is both necessary and sufficient to make
all of P x Q into a precompact, uniform space. Also, it is a symmetric
condition on the product: right almost periodicity is equivalent to

left almost periodicity. Neither of these feature is a consequence of
Condition A.

IV. SOME CONNECTIONS BETWEEN “IMPROPER’ PRIORS
AND F.A. MINIMAX STRATEGIES

Wald (1950) uses game theory to model nonsequential, statistical deci-
sions, roughly, as follows: Player 1 is Nature. A pure strategy is the
determination of a parameter § € ©. Nature’s mixed strategies are
(“prior”) distributions p(6). The Statistician is Player 2. The Statistician
observes an r.v. X, whose distribution F(x) is given as a function of the
parameter 6. (That is, the statistical model fixes the “likelihood” func-
tion for the game.) The Statistician has options, terminal decisions,
d'e D’, where a pure strategy d (a nonrandomized decision function)
for the Statistician is a function from X to D Payoffs to Nature
(“losses” to the Statistician) are indicated by non-negative real
numbers, L(6, d) 2 0. Also, Wald’s theory assumes losses are in “regret”
form, i.e., VO 3d'L(6, d') = 0. ‘

In a typical statistical decision problem each side has infinitely many
pure strategies. Wald’s treatment of statistical games imposes (asym-
metric) mathematical conditions on the strategy sets for the two
players. These conditions prove sufficient to insure that the game has
a value. But the asymmetry leads to existence of a (mixed) minimax
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solution for the Statistician only: only Player 2 is assured a solution,
using countably additive mixed strategies.

Example 4.1. Point Estimation of a normal mean paramerer (known
variance) with squared-error loss. (Strictly, this problem is not
treated by Wald’s theory, since squared-error loss is not bounded.
That mathematical detail is irrelevant to the point illustrated here,
however.)

“Point estimation” is the variety of problem where, given a poten-
tial observation x, the Statistician must propose a value for the (real-
valued) parameter. The Statistician’s pure strategies are of the form
d:X — ©. Squared-error loss (to the Statistician) is the payoff (d — 6)?,
understood as Nature’s gain.

Let Fy(x) be the normal distribution with mean 6 and unit variance
X ~ N(6, 1). Under squared-error loss the game is determined, with
value V = +1. The Statistician’s minimax strategy, a pure strategy, is
the intuitive rule d*(x) = x — posit the observed value. However, no o-
additive mixed strategy for Nature has this large a maximin value.
[Note: VO E, (d* — 6y =1;s0, d* equalizes “risk.”] Of course, Nature
can approximate the maximin value +1 using countably additive mixed
strategies. Specifically, if Nature chooses the mixed strategy m,(0) ~
N(0, n), then '

infptE, (d—q)’ =n/(n+1)<1=V.

Thus, against 7, the Statistician can improve on d* only by the amount
1/(n+1).

Consider the sequence , of mixed (prior probability) strategies that
approximate the value of the game for Nature:

7,0 ~N@O,n), n=1,...

The 7, strategies converge (weak-star) to a uniform measure on ©: an
“improper prior” on ©, represented by (o-finite) Lebesgue measure.
The sequence 7, of N(0, ) probabilities has subsequences converging
(weak-star) to diffuse f.a. probabilities p*: distributions that assign zero
probability to each unit interval, Vkp*(k < 6 < k + 1) = 0. Moreover,
infpt E,*(d - q)* = 1. So, (p*, d*) solves this estimation game. Nature
needs to play a (diffuse) finitely additive, mixed strategy to achieve its
maximin value for the game.
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V. CONCLUSIONS AND OPEN QUESTIONS

First we address a question about what might be intended by a fa.
mixed strategy. We know of five philosophical considerations that lead
some to the use of f.a., rather than o-additive probabilities. In increas-
ing importance for our discussion here, they are:

1.

Measurability precludes' non-trivial, o-additive probabilities on
uncountable sets (Ulam, 1930). As is well known, a c-additive
probability can be extended to the power set provided the exten-

- sion may be only finitely additive (as follows from the Hahn-Banach

theorem). DeFinetti (1972, p. 201) and Dubins and Savage (1976,
p. iii) have voiced this theme in justification of fa. probability. In
rebuttal, we point to the important result of Solovay (1970) which
shows that every subset of the real line may be Lebesgue measur-
able if the Axiom of Choice is weakened and a suitable large-car-
dinal is introduced. There is more than one way to solve the
measurability question. ‘

. Limits of relative frequencies (over infinite sets of possible out-

comes) are not generally o-additive measures. In rebuttal to this
familiar observation there is the position (often voiced by
“Bayesian” statisticians) that probability is not a limit of relative
frequencies - the limiting frequency interpretation is not a useful
one. »

Some, important decision theoretic treatments of personal proba-
bility do not require more than finite additivity. For example,
deFinetti’s (1974) theory of coherent previsions and Savage’s
(1954) normative theory of preference allow for (merely) finitely
additive personal probabilities, based on principles of rational
choice.

Familiar (classical) statistical techniques often have Bayesian
“models” that use diffuse finitely additive “prior” probabilities.
These take the form of “improper” priors, e.g., in Jeffreys’ (1971)
theory.

. Wald’s treatment of statistical games often leads to maximin strate-

gies for Nature which are purely f.a., as illustrated by Example 4.1
(above). The same example suggests that diffuse maximin strategies
may be approximated by countably additive mixed strategies, as the
m, approximate p*. Recall, however, Wald’s game (Example 1.1),
“Pick the Bigger Integer,” and our fair diffuse minimax (and
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maximin) solutions to the fully symmetric version, E 5. No count--

“strategt
ably additive strategy is a good approximation to these. Nonethe- some int
less, the infinite game may be approximated by a sequence of trivial,

‘symmetric finite games - “Pick the Biggest Integer < k.” Obviously, We hope
each of these trivial, fair games is solved with a pure, point-mass
strategy, {k}. But (ignoring the difference between choosing k& for
certain and choosing k with probability 1), each (weak-star) limit
of this sequence of pure-strategies is a diffuse probability, corre- deFinetti,
sponding to our proposal for f.a. solutions to the infinite game, deFinetti,
Thus, the f.a. solutions to the infinite game “Pick the Bigger Integer” Duglilllii’ I
are approximated by -additive solutions to finite approximating Djbins?,i
games, rather than being approximated by oc-additive strategies 10 Gam,
within the infinite game. This observation leads us to our first open Dugundji -
question: ' Dunford,
New Y
.. . . Fan, K. (1
Issue 1. How (and when) can f.a. minimax strategies be approximated Glicksbet
by o-additive ones? When is the approximation by a sequence of o- Math. !
additive strategies within the infinite game (as is possible in Example Heath, D
4.1, but not in Example 1.1) and when is the approximation by a and Ge
sequence of bounded games (as is possible in both examples)? | Jef‘f:g’ist’y L
] ) Karlin, S.
We conclude with several questions abut the adequacy of our tions 1c
mathematical approach to solving games using f.a. probabilities, Princet
Karlin, S.
Issue 2. How generous is Condition 4?7 We have not indicated Econoi
(because we do not know) when an infinite game satisfies 4. It may K%dler,‘
be worthwhile to investigate this question, even if all strategies are Kret?g:s;:
required to be o-additive, as in traditional game theory. We say this Solova
because the minimax theorem, Theorem 2.3, obtains for countably Kuratow:
additive game theory. Lemmas 2.2-2.4 apply when P and Q are sets of ' Savagegl
c-additive probabilities. (Specifically, the f.a. measure y of Lemma 2.2. Schervisl
appears there as a computational device for defining the integral Hp) tc;lzggllz
and the set I(p).) Of course, Condition A does not obtain in Wald’s Solovay,
game, Example 1.1, when strategies are o-additive; but it does obtain Lebes;
when strategies are fa. probabilities, We would like to understand the Ulam,S. -
circumstances that make 4 hold. 16, 14(
Ville, J.
. e . . . joueur
Issue 3. What are the mathematical entities introduced in the metric et al),
completion of Theorem 2.4? We mean to ask both: (i) When are the von Neu
spaces P x O metrically complete (for ppg)? and (ii) Are the minimax Behav
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“strategies” formed by the completion of ppg f.a. probabilities over
some interesting algebra of events?

We hope to address these topics in our future work.
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